La asignatura consta de 3 bloques. En el primer bloque, la asignatura se centrará en usar casos prácticos (con datos reales) y el uso de softwares para desarrollar los principios básicos de los modelos de regresión: especificación e inferencia, interpretación de estimaciones, especificaciones no lineales, interpretación de residuos, introducción a conceptos para análisis de causalidad, etc.. Se hará especial énfasis en comprender cómo se realiza el análisis la inferencia causal usando modelos de regresión (efecto del tratamiento, variables control y “confounders”, etc.). En la segunda parte se explicarán los métodos de simulación más usados: los experimentos de Monte Carlo y el procedimiento de Bootstrapping. Se analizarán aspectos teóricos de los métodos de estimación para entender el potencial de los métodos de simulación y, además, se aplicarán a casos reales para, por ejemplo, la obtención de intervalos de confianza en casos donde no hayan resultados teóricos para construirlos. En la tercera parte, se hará una introducción a los métodos de Machine-Learning usando el caso de los modelos de regresión con múltiples variables. Se introducirán los métodos de selección de variables: Lasso, Ridge y Elastic Net.
- Docente: Víctor Javier Cano Fernández
- Docente: Gustavo Alberto Marrero Díaz